Categories Wellness-Health

Advancing Dietary Assessment with Modern Technology

Rewrite the following article into original, high-quality English.

Requirements:
– Preserve HTML structure (headings, lists, paragraphs)
– Keep all images exactly where they are
– Improve readability and flow
– Add a short introduction and a short conclusion
– Do NOT mention rewriting or AI

Article content:

  • Franks, P. W. et al. Precision medicine for cardiometabolic disease: a framework for clinical translation. Lancet Diabetes Endocrinol. 11, 822–835 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Guasch-Ferré, M. et al. Precision nutrition for cardiometabolic diseases. Nat. Med. 31, 1444–1453 (2025).

    Article 
    PubMed 

    Google Scholar
     

  • Bjørnsbo, K. S. et al. Protocol for the combined cardiometabolic deep phenotyping and registry-based 20-year follow-up study of the Inter99 cohort. BMJ Open 14, e078501 (2014).

    Article 

    Google Scholar
     

  • Shen, X. et al. Multi-omics microsampling for the profiling of lifestyle-associated changes in health. Nat. Biomed. Eng. 8, 11–29 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sankar, P. L. & Parker, L. S. The Precision Medicine Initiative’s All of Us Research Program: an agenda for research on its ethical, legal and social issues. Genet. Med. 19, 743–750 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Willett, W. et al. Food in the Anthropocene: the EAT-Lancet Commission on healthy diets from sustainable food systems. Lancet 393, 447–492 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Li, Y. et al. Reducing climate change impacts from the global food system through diet shifts. Nat. Clim. Change 14, 943–953 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Springmann, M., Clark, M. A., Rayner, M., Scarborough, P. & Webb, P. The global and regional costs of healthy and sustainable dietary patterns: a modelling study. Lancet Planet. Health 5, e797–e807 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • He, P., Feng, K., Baiocchi, G., Sun, L. & Hubacek, K. Shifts towards healthy diets in the US can reduce environmental impacts but would be unaffordable for poorer minorities. Nat. Food 2, 664–672 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Henn, K., Goddyn, H., Olsen, S. B. & Bredie, W. L. P. Identifying behavioral and attitudinal barriers and drivers to promote consumption of pulses: a quantitative survey across five European countries. Food Qual. Preference 98, 104455 (2022).

    Article 

    Google Scholar
     

  • Grummon, A. H., Lee, C. J. Y., Robinson, T. N., Rimm, E. B. & Rose, D. Simple dietary substitutions can reduce carbon footprints and improve dietary quality across diverse segments of the US population. Nat. Food 4, 966–977 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tuninetti, M., Ridolfi, L. & Laio, F. Compliance with EAT–Lancet dietary guidelines would reduce global water footprint but increase it for 40% of the world population. Nat. Food 3, 143–151 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Bunge, A. C., Mazac, R., Clark, M., Wood, A. & Gordon, L. Sustainability benefits of transitioning from current diets to plant-based alternatives or whole-food diets in Sweden. Nat. Commun. 15, 951 (2024).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ravelli, M. N. & Schoeller, D. A. Traditional self-reported dietary instruments are prone to inaccuracies and new approaches are needed. Front. Nutr. 7, 90 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kipnis, V. et al. Structure of dietary measurement error: results of the OPEN biomarker study. Am. J. Epidemiol. 158, 14–21 (2003).

    Article 
    PubMed 

    Google Scholar
     

  • Willett, W. Nutritional Epidemiology (Oxford Univ. Press, 2012).

  • Palaniappan, U., Cue, R., Payette, H. & Gray-Donald, K. Implications of day-to-day variability on measurements of usual food and nutrient intakes. J. Nutr. 133, 232–235 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bingham, S. A. et al. in Manual on Methodology for Food Consumption Studies (eds Cameron, M. E. & van Staveren, W. A.) 53–106 (Oxford Univ. Press, 1988).

  • Eldridge, A. L. et al. Evaluation of new technology-based tools for dietary intake assessment—an ILSI Europe Dietary Intake and Exposure Task Force evaluation. Nutrients 11, 55 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Blanton, C. A., Moshfegh, A. J., Baer, D. J. & Kretsch, M. J. The USDA Automated Multiple-Pass Method accurately estimates group total energy and nutrient intake. J. Nutr. 136, 2594–2599 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Subar, A. F. et al. Addressing current criticism regarding the value of self-report dietary data. J. Nutr. 145, 2639–2645 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Forster, H., Walsh, M. C., Gibney, M. J., Brennan, L. & Gibney, E. R. Personalised nutrition: the role of new dietary assessment methods. Proc. Nutr. Soc. 75, 96–105 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kipnis, V. et al. Bias in dietary-report instruments and its implications for nutritional epidemiology. Public Health Nutr. 5, 915–923 (2002).

    Article 
    PubMed 

    Google Scholar
     

  • Thompson, F. E. & Subar, A. F. in Nutrition in the Prevention and Treatment of Disease 4th edn (eds Coulston, A. M. et al.) 5–48 (Academic Press, 2017).

  • Young, L. R. & Nestle, M. Portion sizes in dietary assessment: issues and policy implications. Nutr. Rev. 53, 149–158 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Amoutzopoulos, B. et al. Portion size estimation in dietary assessment: a systematic review of existing tools, their strengths and limitations. Nutr. Rev. 78, 885–900 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Faulkner, G. P. et al. An evaluation of portion size estimation aids: precision, ease of use and likelihood of future use. Public Health Nutr. 19, 2377–2387 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lucassen, D. A., Willemsen, R. F., Geelen, A., Brouwer-Brolsma, E. M. & Feskens, E. J. M. The accuracy of portion size estimation using food images and textual descriptions of portion sizes: an evaluation study. J. Hum. Nutr. Diet. 34, 945–952 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vuckovic, N., Ritenbaugh, C., Taren, D. L. & Tobar, M. A qualitative study of participants’ experiences with dietary assessment. J. Am. Diet. Assoc. 100, 1023–1028 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Brinkley, S. et al. The state of food composition databases: data attributes and FAIR data harmonization in the era of digital innovation. Front. Nutr. 12, 1552367 (2025).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, Z., Forester, S., Jennings-Dobbs, E. & Heber, D. Perspective: a comprehensive evaluation of data quality in nutrient databases. Adv. Nutr. 14, 379–391 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pennington, J. A. T. et al. Food composition data: the foundation of dietetic practice and research. J. Am. Diet. Assoc. 107, 2105–2113 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Neuhouser, M. L. et al. Novel application of nutritional biomarkers from a controlled feeding study and an observational study to characterization of dietary patterns in postmenopausal women. Am. J. Epidemiol. 190, 2461–2473 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Neuhouser, M. L. et al. Use of recovery biomarkers to calibrate nutrient consumption self-reports in the Women’s Health Initiative. Am. J. Epidemiol. 167, 1247–1259 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Jenab, M., Slimani, N., Bictash, M., Ferrari, P. & Bingham, S. A. Biomarkers in nutritional epidemiology: applications, needs and new horizons. Hum. Genet. 125, 507–525 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Bingham, S. A. Biomarkers in nutritional epidemiology. Public Health Nutr. 5, 821–827 (2002).

    Article 
    PubMed 

    Google Scholar
     

  • Shiffman, S., Stone, A. A. & Hufford, M. R. Ecological momentary assessment. Annu. Rev. Clin. Psychol. 4, 1–32 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Lucassen, D. A., Brouwer-Brolsma, E. M., Slotegraaf, A. I., Kok, E. & Feskens, E. J. DIetary ASSessment (DIASS) Study: design of an evaluation study to assess validity, usability and perceived burden of an innovative dietary assessment methodology. Nutrients 14, 1156 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lucassen, D. A. et al. Validation of the smartphone-based dietary assessment tool ‘Traqq’ for assessing actual dietary intake by repeated 2-h recalls in adults: comparison with 24-h recalls and urinary biomarkers. Am. J. Clin. Nutr. 117, 1278–1287 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lucassen, D. A., Brouwer-Brolsma, E. M., Boshuizen, H. C., Balvers, M. & Feskes, E. J. Evaluation of the smartphone-based dietary assessment tool “Traqq” for assessing habitual dietary intake by random 2-H recalls in adults: comparison with a Food Frequency Questionnaire and blood concentration biomarkers. J. Nutr. 155, 634–642 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Vu, T., Lin, F., Alshurafa, N. & Xu, W. Wearable food intake monitoring technologies: a comprehensive review. Computers 6, 4 (2017).

    Article 

    Google Scholar
     

  • Fontana, J., Farooq, M. & Sazonov, E. in Wearable Sensors (ed. Sazonov, E.). 541–574 (Academic Press, 2020).

  • McClung, H. L. et al. Dietary intake and physical activity assessment: current tools, techniques and technologies for use in adult populations. Am. J. Prevent. Med. 55, e93–e104 (2018).

    Article 

    Google Scholar
     

  • Doulah, A., Ghosh, T., Hossain, D., Imtiaz, M. H. & Sazonov, E. ‘Automatic Ingestion Monitor Version 2’ —a novel wearable device for automatic food intake detection and passive capture of food images. IEEE J. Biomed. Health Inform. 25, 568–576 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bedri, A., Li, D., Khurana, R., Bhuwalka, K. & Goel, M. FitByte: automatic diet monitoring in unconstrained situations using multimodal sensing on eyeglasses. In Proc. 2020 CHI Conference on Human Factors in Computing Systems 1–12 (ACM, 2020).

  • Lo, F. P. W. et al. Dietary assessment with multimodal ChatGPT: a systematic analysis. IEEE J. Biomed. Health Inform. 28, 7577–7587 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Zhang, S., Callaghan, V. & Che, Y. Image-based methods for dietary assessment: a survey. J. Food Meas. Charact. 18, 727–743 (2024).

    Article 

    Google Scholar
     

  • Jia, W. et al. Automatic food detection in egocentric images using artificial intelligence technology. Public Health Nutr. 22, 1168–1179 (2019).

    PubMed 

    Google Scholar
     

  • Marín-Méndez, J.-J. et al. Hyperspectral imaging as a non-destructive technique for estimating the nutritional value of food. Curr. Res. Food Sci. 9, 100799 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kok, E., Chauhan, A., Tufano, M., Feskens, E. & Camps, G. The potential of short-wave infrared hyperspectral imaging and deep learning for dietary assessment: a prototype on predicting closed sandwiches fillings. Front. Nutr. 11, 1520674 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Gao, Q. et al. A scheme for a flexible classification of dietary and health biomarkers. Genes Nutr. 12, 34 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Scalbert, A. et al. The food metabolome: a window over dietary exposure. Am. J. Clin. Nutr. 99, 1286–1308 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cuparencu, C. et al. Towards nutrition with precision: unlocking biomarkers as dietary assessment tools. Nat. Metab. 6, 1438–1453 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Dragsted, L. O. et al. Validation of biomarkers of food intake-critical assessment of candidate biomarkers. Genes Nutr. 13, 14 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brouwer-Brolsma, E. M. et al. Combining traditional dietary assessment methods with novel metabolomics techniques: present efforts by the Food Biomarker Alliance. Proc. Nutr. Soc. 76, 619–627 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Playdon, M. C. et al. Measuring diet by metabolomics: a 14-d controlled feeding study of weighed food intake. Am. J. Clin. Nutr. 119, 511–526 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Eichelmann, F. et al. Lipidome changes due to improved dietary fat quality inform cardiometabolic risk reduction and precision nutrition. Nat. Med. 30, 2867–2877 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aristizabal-Henao, J. J., Biltoft-Jensen, A. P., Christensen, T. & Stark, K. D. Lipidomic and fatty acid biomarkers in whole blood can predict the dietary intake of eicosapentaenoic and docosahexaenoic acids in a Danish population. J. Nutr. 154, 2108–2119 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bagheri, M. et al. A lipid-related metabolomic pattern of diet quality. Am. J. Clin. Nutr. 112, 1613–1630 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McKeown, N. M. et al. Comparison of plasma alkylresorcinols (AR) and urinary AR metabolites as biomarkers of compliance in a short-term, whole-grain intervention study. Eur. J. Nutr. 55, 1235–1244 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Andersen, M. B. S. et al. Untargeted metabolomics as a screening tool for estimating compliance to a dietary pattern. J. Proteome Res. 13, 1405–1418 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Unión-Caballero, A. et al. Metabolome biomarkers linking dietary fibre intake with cardiometabolic effects: results from the Danish Diet, Cancer and Health-Next Generations MAX study. Food Function 15, 1643–1654 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Marklund, M. et al. A dietary biomarker approach captures compliance and cardiometabolic effects of a healthy Nordic diet in individuals with metabolic syndrome. J. Nutr. 144, 1642–1649 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wilson, T. et al. Spot and cumulative urine samples are suitable replacements for 24-hour urine collections for objective measures of dietary exposure in adults using metabolite biomarkers. J. Nutr. 149, 1692–1700 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lloyd, A. J. et al. Developing community-based urine sampling methods to deploy biomarker technology for the assessment of dietary exposure. Public Health Nutr. 23, 3081–3092 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xi, M. et al. Combined urinary biomarkers to assess coffee intake using untargeted metabolomics: discovery in three pilot human intervention studies and validation in cross-sectional studies. J. Agric. Food Chem. 69, 7230–7242 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vázquez-Manjarrez, N. et al. Discovery and validation of banana intake biomarkers using untargeted metabolomics in human intervention and cross-sectional studies. J. Nutr. 149, 1701–1713 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Cuparencu, C. et al. The anserine to carnosine ratio: an excellent discriminator between white and red meats consumed by free-living overweight participants of the PREVIEW study. Eur. J. Nutr. 60, 179–192 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Landberg, R. et al. Dose response of whole-grain biomarkers: alkylresorcinols in human plasma and their metabolites in urine in relation to intake. Am. J. Clin. Nutr. 89, 290–296 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yin, X. et al. Estimation of chicken intake by adults using metabolomics-derived markers. J. Nutr. 147, 1850–1857 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gibbons, H. et al. Demonstration of the utility of biomarkers for dietary intake assessment; proline betaine as an example. Mol. Nutr. Food Res. https://doi.org/10.1002/mnfr.201700037 (2017).

  • Hu, Y. et al. Calibration of citrus intake assessed by food frequency questionnaires using urinary proline betaine in an observational study setting. Am. J. Clin. Nutr. 120, 178–186 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maixner, F. et al. The Iceman’s last meal consisted of fat, wild meat and cereals. Curr. Biol. 28, 2348–2355 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Garnick, S., Barboza, P. S. & Walker, J. W. Assessment of animal-based methods used for estimating and monitoring rangeland herbivore diet composition. Rangeland Ecol. Manag. 71, 449–457 (2018).

    Article 

    Google Scholar
     

  • Wibowo, M. C. et al. Reconstruction of ancient microbial genomes from the human gut. Nature 594, 234–239 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Søe, M. J. et al. Ancient DNA from latrines in Northern Europe and the Middle East (500 BC–1700 AD) reveals past parasites and diet. PLoS ONE 13, e0195481 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maixner, F. et al. Hallstatt miners consumed blue cheese and beer during the Iron Age and retained a non-Westernized gut microbiome until the Baroque period. Curr. Biol. 31, 5149–5162.e6 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Carlino, N. et al. Unexplored microbial diversity from 2,500 food metagenomes and links with the human microbiome. Cell 187, 5775–5795.e15 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shinn, L. M. et al. Fecal metagenomics to identify biomarkers of food intake in healthy adults: findings from randomized, controlled, nutrition trials. J. Nutr. 154, 271–283 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ando, H. et al. Methodological trends and perspectives of animal dietary studies by noninvasive fecal DNA metabarcoding. Environ. DNA 2, 391–406 (2020).

    Article 

    Google Scholar
     

  • Thuo, D. et al. Food from faeces: evaluating the efficacy of scat DNA metabarcoding in dietary analyses. PLoS ONE 14, e0225805 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zeng, J. et al. Food DNA sequencing reveals associations between dietary perturbations and patient outcomes in hematopoietic stem cell transplant. Transplant. Cell. Ther. 30, S132 (2024).

    Article 

    Google Scholar
     

  • Petrone, B. L. et al. Diversity of plant DNA in stool is linked to dietary quality, age, and household income. Proc. Natl Acad. Sci. USA 120, e2304441120 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Petrone, B. L. et al. A pilot study of metaproteomics and DNA metabarcoding as tools to assess dietary intake in humans. Food Function 16, 282–296 (2025).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Diener, C. et al. Metagenomic estimation of dietary intake from human stool. Nat. Metab. 7, 617–630 (2025).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Valdés-Mas, R. et al. Metagenome-informed metaproteomics of the human gut microbiome, host, and dietary exposome uncovers signatures of health and inflammatory bowel disease. Cell 188, 1062–1083.e36 (2025).

    Article 
    PubMed 

    Google Scholar
     

  • Dragsted, L. O., Roager, H. M. & Cuparencu, C. Querying stool for dietary information. Nat. Metab. 7, 450–451 (2025).

    Article 
    PubMed 

    Google Scholar
     

  • Jacobs, D. R. & Temple, N. J. in Nutritional Health: Strategies for Disease Prevention (eds Temple, N. J. et al.) 287–296 (Springer, 2023).

  • Jacobs, D. R., Gross, M. D. & Tapsell, L. C. Food synergy: an operational concept for understanding nutrition. Am. J. Clin. Nutr. 89, 1543S–1548S (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gürdeniz, G. et al. Analysis of the SYSDIET Healthy Nordic Diet randomized trial based on metabolic profiling reveal beneficial effects on glucose metabolism and blood lipids. Clin. Nutr. 41, 441–451 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • D’Angelo, S. et al. Combining biomarker and food intake data: calibration equations for citrus intake. Am. J. Clin. Nutr. 110, 977–983 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Hua, H. et al. A wipe-based stool collection and preservation kit for microbiome community profiling. Front. Immunol. 13, 889702 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ahmed, S. et al. Foodomics: a data-driven approach to revolutionize nutrition and sustainable diets. Front. Nutr. 9, 874312 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chakraborty, H. et al. The Dietary Biomarkers Development Consortium: an initiative for discovery and validation of dietary biomarkers for precision nutrition. Curr. Dev. Nutr. 9, 107435 (2025).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bobokhidze, E. et al. Standardised and Objective Dietary Intake Assessment Tool (SODIAT): protocol of a dual-site dietary intervention study to integrate dietary assessment methods. F1000Res. 13, 1144 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Leave a Reply

    您的邮箱地址不会被公开。 必填项已用 * 标注

    You May Also Like